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Abstract. The Ricci iteration is a discrete analogue of the Ricci flow. We
give the first study of the Ricci iteration on a class of Riemannian manifolds
that are not Kähler. The Ricci iteration in the non-Kähler setting exhibits new
phenomena. Among them is the existence of so-called ancient Ricci iterations.
As we show, these are closely related to ancient Ricci flows and provide the
first nontrivial examples of Riemannian metrics to which the Ricci operator
can be applied infinitely many times. In some of the cases we study, these
ancient Ricci iterations emerge (in the Gromov–Hausdorff topology) from a
collapsed Einstein metric and converge smoothly to a second Einstein metric.
In the case of compact homogeneous spaces with maximal isotropy, we prove
a relative compactness result that excludes collapsing. Our work can also be
viewed as proposing a dynamical criterion for detecting whether an ancient
Ricci flow exists on a given Riemannian manifold as well as a method for
predicting its limit.

1. Introduction

Let (M, g1) be a smooth Riemannian manifold. A Ricci iteration is a sequence
of metrics {gi}i∈N on M satisfying

Ric gi+1 = gi, i ∈ N,(1.1)

where Ric gi+1 denotes the Ricci curvature of gi+1. One may think of (1.1) as
a dynamical system on the space of Riemannian metrics on M . We restrict our
attention to the case of positive Ricci curvature in the present article; different
Ricci iterations can be defined in the context of nonpositive curvature.

Part of the interest in the Ricci iteration is that, clearly, Einstein metrics with
Einstein constant 1 are fixed points, and so (1.1) aims to provide a natural new
approach to uniformization. In essence, the Ricci iteration aims to reduce the
Einstein equation to a sequence of prescribed Ricci curvature equations. Introduced
by the second-named author [37, 38] as a discretization of the Ricci flow, the Ricci
iteration has been since studied by a number of authors; see the survey [40, §6.5]
and references therein. In all previous works, the underlying manifold (M, g1) is
assumed to be Kähler; essentially nothing is known about the Ricci iteration in the
general Riemannian setting.
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Given the central rôle of uniformization and of the Ricci flow in geometry, it
seems of interest to investigate whether the Ricci iteration could be understood for
general Riemannian manifolds which may not be Kähler. In this article we take a
first step in this direction. Namely, we show that, indeed, the Ricci iteration can be
defined on some non-Kähler manifolds and that under some natural assumptions
it converges to an Einstein metric with positive Ricci curvature. We also prove a
relative compactness result. The manifolds we investigate here are compact homo-
geneous spaces. The study of Einstein metrics and the Ricci flow on such spaces is
an active field; see, e.g., [6, Chapter 7], [1, 3, 4, 7–9, 12, 25, 29, 31, 43].

Parts of our work can be viewed as proposing a general criterion for detecting
whether an ancient Ricci flow exists on a given Riemmanian manifold as well as a
method for predicting what its limit should be. The notion of an ancient Ricci flow
is central to the theory of geometric evolution equations. These ancient flows are
the prototype for singularity models for the Ricci flow and have been crucial, for
example, in Perelman’s work. A basic question in the field is when an ancient Ricci
flow exists on a given manifold. If it exists, one would like to describe its limit. In
this article, we put forward a conjecture that stipulates that a time-reversed version
of the Ricci iteration in fact detects (i.e., is a sufficient condition for) the existence of
ancient Ricci flows. We prove this conjecture in the setting of certain homogeneous
spaces. Moreover, we show that the limits of the ancient Ricci flows coincide with
the limits of the time-reversed iterations. We hope this provides motivation for
considering this dynamical approach in general. One can also imagine this being a
useful idea for other evolution equations and dynamical systems.

As we find in this article, in the non-Kähler setting the Ricci iteration exhibits
new types of behavior as compared to the Kähler setting. For instance, solutions
to (1.1) may not exist for all i ∈ N. In addition, existence (and hence convergence)
may fail even when M admits a homogeneous Einstein metric. Finally, and perhaps
surprisingly, we construct the first nontrivial ancient Ricci iterations. These are
sequences of Riemannian metrics {g1, g0, g−1, g−2, . . .} such that

(1.2) gi−1 = Ric gi, i = 1, 0,−1,−2, . . . .

Thus, on the Riemannian manifold (M, g1), the time-reversed Ricci iteration

g1, Ric g1, RicRic g1, . . .

exists. These provide examples of Riemannian metrics to which the Ricci operator
can be applied infinitely many times, answering questions posed in [38]. We find
such metrics in dimensions as low as 6.

To put ancient Ricci iterations in perspective, as explained in [38, §3], the Ricci
iteration (1.1) can be thought of as the backward Euler discretization of the nor-
malized Ricci flow, and hence one may expect good analytical properties for it. On
the other hand, in doing the reverse procedure, i.e., iterating the Ricci operator,
one typically loses two derivatives in each step. What is more, the Ricci operator
can only be iterated as long as positivity is preserved. Therefore, at least from
the analytical point of view, it seems unlikely that such ancient iterations should
exist. We show they are closely tied to the geometry, exist in tandem with ancient
solutions of the Ricci flow constructed by Buzano [10], and exhibit a relative com-
pactness property similar to that of the Ricci iteration. In some cases, they emerge
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from one Einstein metric as i → −∞ and converge to a second Einstein metric as
i → ∞. In other cases, they emerge from a collapsed Einstein limit G/K where
H � K � G as i → −∞ and converge to an Einstein metric as i → ∞. We find
examples of the latter phenomenon starting in dimension 7.

One of the reasons the Ricci iteration is relatively well-understood in the Kähler
setting is that the prescribed Ricci curvature equation reduces in that setting to a
complex Monge–Ampère equation. The existence and uniqueness are then given by
the Calabi–Yau theorem [11, 45]. More precisely, there always exist unique Kähler
metrics solving (1.1) for i ∈ N, provided that g1, and hence each gi, represents
(2π times) the first Chern class. The first result on the Ricci iteration established
smooth convergence to a Kähler–Einstein metric under some symmetry assump-
tions [38, Theorem 3.3] that turn out to hold in a number of interesting cases [13–16].
A conjecture stipulates that the Ricci iteration should in fact always converge in an
appropriate sense to a Kähler–Einstein metric when one exists [38, Conjecture 3.2].
Recent progress in this direction is due to [5, Theorem A], [17, Corollary 3.10].
Added in proof : This conjecture is now established [18].

Clearly, the first obstacle in the general Riemannian setting is to understand
the prescribed Ricci curvature equation. While this equation has been the subject
of active research (e.g., [6, Chapter 5], [19–22, 27, 34, 35, 41])—when compared to
the Kähler case—it is understood rather poorly on general Riemannian manifolds.
Recent results of the first-named author [36] provide a replacement for the Calabi–
Yau theorem on certain classes of homogeneous spaces and are crucial in the present
article.

The second obstacle is to show convergence. In order to do so, one may seek
and analyze various monotonic quantities associated with the iteration. One key
ingredient in the proofs of our Theorems 2.1 and 2.4 is the monotonicity of the
quantity αi given by (4.8). Analogous monotonicity was exploited by Buzano in
the analysis of the Ricci flow [10]. While the iteration turns out to exhibit similar
limiting behavior to the flow in many situations, there are cases where they differ;
see, e.g., Remark 2.2.

The third, and perhaps new, obstacle in the general Riemannian setting is that—
as we find in this article—the Ricci iteration can exhibit a range of behaviors
depending on the homogeneous space and the starting point, quite in contrast to
the Kähler setting: there the Ricci iteration always exists and either converges or
not depending only on whether a Kähler–Einstein metric exists or not (regardless
of the initial condition). We will see that neither of these behaviors persists in the
setting of homogeneous spaces. This is, perhaps, indicative of the relation between
the Ricci iteration and the Ricci flow. Indeed, the behavior of the Ricci flow on
homogeneous spaces is rather intricate as compared to the Kähler–Ricci flow on
Fano manifolds (that always converges to a Kähler–Einstein metric when such a
metric exists).

Finally, we remark that the Ricci iteration seems harder to understand than the
Ricci flow. This is certainly the case in the Kähler setting; perhaps one reason is
the wide variety of tools available to analyze parabolic flows. Currently, a complete
theory of the Ricci iteration for all compact homogeneous manifolds seems out of
reach, as even Einstein metrics and the Ricci flow are not completely understood
in this setting. The study we carry out in the present article—while restricted to a
certain class of highly symmetric manifolds in which the Ricci iteration reduces to
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a sequence of systems of algebraic equations—at least gives a setting in which the
Ricci iteration can be fully understood and compared to the Ricci flow in detail.
Among other things, it suggests what kind of phenomena to expect in general.

2. Main results

Let H be a closed connected subgroup of a compact connected Lie group G. In
this article, we focus on the compact homogeneous space

M := G/H

and G-invariant Riemannian metrics on it.

2.1. Preliminaries. The group G acts on M by associating to λ ∈ G the diffeo-
morphism Lλ : M → M defined by νH �→ λνH for ν ∈ G. The action is called
effective if the equality Lλ = id implies that λ is the identity of G. Henceforth, G
will be assumed to act effectively. This entails no loss of generality [6, §7.12].

Suppose

(2.1) n := dimM ≥ 3.

Let g denote the Lie algebra of G, and let AdG be the adjoint representation of G on
g. We fix a bi-invariant Riemannian metric on G. It induces an AdG(G)-invariant
inner product Q on g and a G-invariant Riemannian metric ĝ on M . Choose a
point μ ∈ M . Then H can be identified with G ∩ Isoμ(M, ĝ), where Isoμ(M, ĝ) is
the isotropy group of (M, ĝ) at μ.

Let h denote the Lie algebra of H. We know H is compact (as G is), and so is
AdG(H). The Q-orthogonal complement of h in g is an AdG(H)-invariant subspace
of g. We denote this subspace by m. Thus,

g = m⊕ h.

We naturally identify
m ∼= g/h ∼= TμM.

Every G-invariant Riemannian metric on M induces an AdG(H)-invariant inner
product on m. The converse also holds [6, Theorem 7.24], so

M := {G-invariant Riemannian metrics on M}
∼= {AdG(H)-invariant inner products on m}.(2.2)

Unlike in the case of Kähler metrics on a Kähler manifold, the space of G-invariant
metrics on M is finite-dimensional. Nevertheless, we will see that the Ricci iteration
exhibits more complicated phenomena than in the Kähler setting, where the space
of Kähler metrics is infinite-dimensional.

Consider a Q-orthogonal AdG(H)-invariant decomposition

m = m1 ⊕ · · · ⊕ms(2.3)

such that AdG(H)|mi
is irreducible for each i = 1, . . . , s. Let

(2.4) di := dimmi ∈ N.

While the space m may admit more than one decomposition of the form (2.3),
the number of summands, s, is determined by G and H; i.e., it is the same for all
such decompositions. On the other hand, the summands m1, . . . ,ms are determined
uniquely up to order if

(2.5) AdG(H)|mi
is inequivalent to AdG(H)|mk

whenever i 
= k.
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Indeed, suppose m′
1 ⊕ · · · ⊕ m′

s′ is another decomposition. The Q-orthogonal pro-
jection from mi to m′

j is an equivariant map. Therefore, it is either an isomorphism
or zero by Schur’s lemma. We will assume (2.5) holds in order to state our first two
results. For our other results, however, we will not assume it.

The isotropy representation of M is said to be monotypic if it satisfies (2.5).
Given T ∈ M, it is always possible to choose the decomposition (2.3) so that T

has a simple “diagonal” form. More precisely, let

πi : m → mi

denote the natural projections induced by (2.3). Recall that AdG(H)|mi
is irre-

ducible for each i. There exists a choice of (2.3) such that T has the form

T =
s∑

i=1

ziπ
∗
iQ, zi > 0;(2.6)

see [44, p. 180]. Equality (2.6) can also be written as

T (X,Y ) =

s∑
i=1

ziQ(πi(X), πi(Y )), X, Y ∈ m.

As (2.2) shows, we can identify M with a subset of m∗ ⊗ m∗. With this identi-
fication, the topology of m∗ ⊗m∗ induces a topology on M. Convergence in M is
equivalent to the smooth convergence of Riemannian metrics on M .

In what follows, we say H is maximal in G if H is a maximal connected Lie
subgroup of G or, equivalently, if h is a maximal Lie subalgebra of g.

When s = 1, the spaceM is one-dimensional, and so we will always assume s > 1.
(We remark that our earlier assumption (2.1) is reasonable since the only compact
two-dimensional manifolds admitting positively curved metrics, S2 = SO(3)/SO(2)
and RP 2 = O(3)/(O(2)×O(1)), satisfy s = 1.) Theorems 2.1 and 2.4 below concern
the case when s = 2 and (2.5) holds. To formulate them, denote

(2.7) E := {Einstein metrics in M}.
If E is nonempty, define

α− := inf
{
z1/z2 : z1, z2 satisfy (2.6) for some T ∈ E

}
,

α+ := sup
{
z1/z2 : z1, z2 satisfy (2.6) for some T ∈ E

}
.(2.8)

Lemma 4.3 below implies that when s = 2 and (2.5) holds, there are only finitely
many Einstein metrics in M up to scaling; therefore, α− and α+ lie in (0,∞).

Theorems 2.1 and 2.4 distinguish between the maximal and nonmaximal cases.
When H is maximal in G, at least one Einstein metric exists in M [44, p. 177].
When H is not maximal, there is a connected Lie subgroup K of G such that

(2.9) H � K � G,

and we write k for the Lie algebra of K. If s = 2 and (2.5) is satisfied, we assume
without loss of generality that

k = h⊕m1.(2.10)

Theorems 2.1 and 2.4 will require that the projection π1[m2,m2] be nonzero; i.e.,

(2.11) Q([X,Y ], Z) 
= 0 for some X ∈ m1 and Y, Z ∈ m2.
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This hypothesis automatically holds when H is maximal in G (see Lemma 3.4).
If an intermediate subgroup K satisfying (2.9) and (2.10) exists, formula (2.11)
may fail to hold. However, when (2.11) is false, all the G-invariant metrics on M
have the same Ricci curvature (see (4.16)). In this case, there is at most one Ricci
iteration in M. All the metrics in this iteration must be the same. Moreover, they
must be Einstein.

If s = 2 and T ∈ M is given by (2.6), then the ratio z1/z2 determines T up to
scaling. Since we are assuming z1, z2 > 0, one may think of the space of such ratios
as the moduli space of G-invariant metrics on M .

2.2. Two irreducible isotropy summands. Our first result completely describes
the Ricci iteration on compact homogeneous spaces with two inequivalent isotropy
summands. We refer to [24, 28] for a classification of such spaces; see also Exam-
ples 4.15 and 4.14 below. The Ricci flow on them was studied in [2, 10, 26].

Theorem 2.1 (Ricci iteration for s = 2). Let M = G/H. Assume that s = 2
in the decomposition (2.3) and that the isotropy representation of M is monotypic
(i.e., (2.5) holds). Let T ∈ M (recall (2.2)) be an arbitrary G-invariant metric
given by (2.6).

(i) Suppose H is maximal in G. There exists a unique sequence {gi}i∈N ⊂ M
such that the iteration equation (1.1) holds for all i ∈ N and g1 = cT for
some c > 0. The metrics {gi}i∈N converge smoothly to an Einstein metric
on M as i tends to ∞.

(ii) Suppose G has a connected Lie subgroup K satisfying (2.9) and (2.10). Let
the projection π1[m2,m2] be nonzero (i.e., let (2.11) hold).
(a) Assume AdG(H)|m1

is trivial. Then E 
= ∅. There exists a unique
sequence {gi}i∈N⊂M such that the iteration equation (1.1) holds for
all i∈N and g1=cT for some c>0. This sequence converges smoothly
to the unique G-invariant Einstein metric on M with Einstein constant
1.

(b) Assume AdG(H)|m1
is nontrivial and E 
= ∅. A sequence {gi}i∈N ⊂ M

satisfying (1.1) for all i ∈ N and g1 = cT for some c > 0 exists if and
only if the inequality z1/z2 ≥ α− holds. When it exists, the sequence
{gi}i∈N is unique and converges smoothly to an Einstein metric on M .

(c) If E = ∅, there is no sequence {gi}i∈N ⊂ M such that (1.1) holds for
all i ∈ N.

Remark 2.2. The Ricci iteration and the Ricci flow exhibit essentially the same
limiting behavior except in two cases: in the case (ii-b) with initial condition satis-
fying z1/z2 < α− and in the case (ii)(c), the flow converges to a collapsed Einstein
metric on G/K [10, Theorems 3.4, 3.8], while the iteration stops after finitely many
steps.

One motivation for introducing the Ricci iteration in [38] was a question of De-
Turck and Nadel [39, Remark 4.63], [32]: does the Ricci operator possess nontrivial
(i.e., non-Einstein) fixed points (i.e., solutions to RicRic . . .Ric g = g)? The proof
of Theorem 2.1 answers this question in the negative in the setting of the theorem
since we exhibit a strictly monotone quantity along the iteration.

Another natural question, posed in [38], is, roughly, whether there exist discrete
analogs of ancient Ricci flows. More precisely, given a Riemannian metric g, one
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may associate to it a Riemannian invariant

r(g) := sup
{
k ∈ N : RicRic . . .Ric︸ ︷︷ ︸

k−1 times

g is a Riemannian metric
}

called the Ricci index of g [38, §10.7]. Following [38, Definition 10.21] one can then
define a filtration of M,

M = M(1) ⊃ M(2) ⊃ · · · ⊃ M(l) ⊃ · · · ,(2.12)

by setting

M(l) = {g ∈ M : r(g) ≥ l}.

Question 2.3 ([38, p. 1562]). What is M(∞) :=
⋂∞

l=1M(l)? What is the relation

between M(∞) and the Ricci flow?

Clearly, E ⊂ M(∞) = {g ∈ M : r(g) = ∞}. But, do there exist g with r(g) = ∞
that are neither Einstein nor direct sums of Einstein metrics? We answer this last
question in the affirmative. We also answer Question 2.3 on compact homogeneous
spaces with s = 2 satisfying (2.5). The interest in metrics with infinite Ricci index
is that one may use them as starting points for the ancient Ricci iteration (1.2).
These seem to be the first nontrivial examples in the literature of ancient Ricci
iterations, and we describe precisely their limits. As pointed out to us by M. Wang
after the completion of this article, Walton [42] proved Theorem 2.4 below with the
exception of part (ii)(a) recently and independently. Comparing the result to the
study of the Ricci flow by Buzano [10] shows that the ancient Ricci iterations exist
in tandem with ancient Ricci flows and have similar limits.

Theorem 2.4 (Ancient Ricci iterations for s = 2). Let M = G/H. Assume
that s = 2 in the decomposition (2.3) and that the isotropy representation of M is
monotypic (i.e., (2.5) holds). In the statements below, we always assume T ∈ M
(recall (2.2)) is given by (2.6).

(i) Suppose H is maximal in G. Then (recall (2.8))

(2.13) M(∞) = {T ∈ M : z1/z2 ∈ [α−, α+]}.
Whenever r(g1) = ∞, the metrics {g−i}∞i=−1 given by the ancient iteration
equation (1.2) converge smoothly to an Einstein metric on M .

(ii) Suppose G has a connected Lie subgroup K satisfying (2.9) and (2.10). Let
the projection π1[m2,m2] be nonzero (i.e., let (2.11) hold).
(a) Assume AdG(H)|m1

is trivial. Then

M(∞) = {T ∈ M : z1/z2 ≤ α−}.(2.14)

Whenever r(g1) = ∞ and g1 is non-Einstein, the metrics {g−i}∞i=−1

given by (1.2) converge smoothly to a degenerate tensor that is the
pullback of an Einstein metric gE on G/K under the inclusion map
G/K ↪→ G/H. The manifolds (M, g−i) converge in the Gromov–
Hausdorff topology to (G/K, gE) as i → ∞.

(b) Assume AdG(H)|m1
is nontrivial. The set M(∞) is empty if E is, and

(2.15) M(∞) = {T ∈ M : z1/z2 ≤ α+}
otherwise. Whenever r(g1) = ∞, the metrics {g−i}∞i=−1 given by the
ancient iteration equation (1.2) converge smoothly to an Einstein met-
ric on M .
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In particular, M(∞) 
= E always in (2.14) and (2.15), as well as when α− < α+

(i.e., when there exist at least two distinct Einstein metrics of volume 1) in (2.13).
We also observe that in the maximal case (in fact, even when s ≥ 2 and (2.5) does
not necessarily hold)

(2.16) M(l) \M(l+1) = {g ∈ M : r(g) = l} 
= ∅, l ∈ N,

as can be seen by applying Theorem 3.1 l times starting with a degenerate positive-
semidefinite nonzero T . To compare with the Kähler setting, note that there also
the filtration of the space of Kähler metrics similar to (2.12) is strictly decreasing
in the sense of (2.16) (by applying the Calabi–Yau theorem l times starting with
a nonpositive form); however, a characterization of the analog of M(∞) is still
missing.

In general, we make the following conjecture.

Conjecture 2.5. A manifold admits an ancient Ricci iteration only if it admits an
ancient Ricci flow.

In other words, the conjecture gives a sufficient condition for the existence of
ancient Ricci flows (on manifolds that admit positive Ricci curvature).

Theorem 2.4 and the results of Buzano [10] show that this conjecture holds in the
case of compact homogeneous spaces satisfying s = 2 and (2.5). In a forthcoming
paper we study this conjecture on certain Lie groups and spheres, including the
case of S3, equipped with left-invariant metrics (note that it is easy to see, as was
also pointed out to us by W. Ziller after the completion of the present article, that
some Berger metrics on S3 have infinite Ricci index).

2.3. Relative compactness for maximal isotropy. Our next result concerns
the case when s ≥ 2 and the isotropy summands are allowed to be equivalent
(i.e., when (2.5) does not necessarily hold) but when H is assumed to be maximal.
It is generally unknown whether, in this situation, the prescribed Ricci curvature
problem has unique solutions inM. Therefore, it is not clear whether to expect con-
vergence of the Ricci iteration or not. If indeed there is no uniqueness, then relative
compactness is a reasonable replacement (cf. [5, Theorem A], [17, Corollary 3.10]
in the Kähler setting). We prove it in Theorem 2.6(i). It turns out that a similar
result holds for ancient Ricci iterations. This is the content of Theorem 2.6(ii). If a
sequence {gi}i∈N satisfying (1.1) or a sequence {g−i}∞i=−1 satisfying (1.2) converges
to some tensor field, this limit may fail to be positive-definite, i.e., a Riemannian
metric. When H is maximal, this is excluded by Corollary 2.9.

Theorem 2.6 (Existence and relative compactness for s ≥ 2). Let M = G/H.
Suppose that s ≥ 2 in the decomposition (2.3) and that H is maximal in G.

(i) Given T ∈ M, there exist a sequence {gi}i∈N ⊂ M satisfying the iteration
equation (1.1) for all i ∈ N and g1 = cT for some c > 0. Any such sequence
is relatively compact in M.

(ii) Any sequence {g−i}∞i=−1 ⊂ M satisfying the ancient iteration equation (1.2)
is relatively compact in M.

Remark 2.7. The existence part of Theorem 2.6(i) becomes false if the maximality
condition on H is removed. Indeed, Theorem 2.1(ii)(b)–(ii)(c) demonstrates that it
may be impossible to find a sequence {gi}i∈N satisfying (1.1). If {gi}i∈N is known
to exist and H is not maximal, then whether or not {gi}i∈N must be relatively
compact in M is an open question.
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Remark 2.8. The collapsing construction of Theorem 2.4(ii)(a) shows that none
of the results for ancient Ricci iterations appearing in this subsection hold if the
maximality assumption is dropped.

We state two consequences of Theorem 2.6.

Corollary 2.9. Let M = G/H. Suppose that s ≥ 2 in the decomposition (2.3)
and that H is maximal in G. Any sequence {gi}i∈N ⊂ M satisfying the iteration
equation (1.1) (or {g−i}∞i=−1 ⊂ M satisfying the ancient iteration equation (1.2))
has a subsequence converging smoothly to some Riemannian metric in M.

Proof. Theorem 2.6 implies that the closures of {gi}i∈N and {g−i}∞i=−1 in M are
compact subsets of M. Therefore, these sequences contain subsequences whose
limits lie in M. �

Similarly to (2.2), there exists an isomorphism

T := {G-invariant symmetric (0,2)-tensor fields on M}
∼= {AdG(H)-invariant symmetric bilinear forms on m}.(2.17)

Thus, we can identify T with a subset of m∗⊗m∗. The topology of m∗⊗m∗ induces
a topology on T , as it did on M.

Corollary 2.10. Suppose that M = G/H, that s ≥ 2 in the decomposition (2.3),
and that H is maximal in G. Assume a sequence {gi}i∈N ⊂ M satisfying the
iteration equation (1.1) (or {g−i}∞i=−1 ⊂ M satisfying the ancient iteration equa-
tion (1.2)) converges smoothly to some tensor field g∞ ∈ T . Then g∞ is an Einstein
metric.

Proof. Assume {gi}i∈N converges to g∞. The other case is treated analogously.
According to Corollary 2.9, {gi}i∈N contains a subsequence that converges to some
Riemannian metric in M. This metric must coincide with g∞ by uniqueness of
limits. Thus, g∞ lies in M. To see that g∞ satisfies the Einstein equation, one
simply needs to pass to the limit in equality (1.1) as i tends to ∞. �

We propose the following conjecture. It is motivated by Theorems 2.1(i) and
2.6(i), as well as the fact that compact homogeneous Ricci solitons are necessarily
Einstein (see [30, Theorem 1.4]).

Conjecture 2.11. Suppose H is maximal in G. Let g1 be a Riemannian metric
in M.

(i) If a sequence {gi}i∈N ⊂ M starting with g1 and satisfying the iteration
equation (1.1) exists and is unique, then this sequence converges to an
Einstein metric.

(ii) If r(g1) = ∞, then the sequence {g−i}∞i=−1 ⊂ M given by the ancient
iteration equation (1.2) converges to an Einstein metric.

2.4. Organization. This article is organized as follows. Section 3 recalls facts on
homogeneous metrics and the prescribed Ricci curvature equation from [33,36, 44]
that play a central role in our arguments. Section 4 contains the proofs of our
results for s = 2: Theorem 2.1(i) is established in §4.2, Theorem 2.1(ii) in §4.3, and
Theorem 2.4 in §4.4. We conclude Section 4 by giving two explicit examples in §4.5.
In Section 5 we treat the case s ≥ 2 with H maximal, proving Theorem 2.6.
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3. The prescribed Ricci curvature equation

In this section we recall results on homogeneous metrics and the prescribed Ricci
curvature problem, following [33, 36, 44]. We begin with a theorem concerning
the existence of solutions to the prescribed (positive-semidefinite) Ricci curvature
equation [36, Theorem 1.1]. The sign of the constant c below is explained by
Lemma 3.5 below.

Theorem 3.1 (Prescribed curvature for maximal isotropy). Let H be maximal in
G. Given a positive-semidefinite nonzero T ∈ T , there exists a metric g ∈ M whose
Ricci curvature coincides with cT for some c > 0.

Our arguments will involve three arrays of numbers:

(3.1) {bi}si=1, {γl
ik}si,k,l=1, {ζi}si=1,

associated with the inner product Q and the decomposition (2.3). To define the
first one, denote by B the Killing form on the Lie algebra g. As AdG(H)|mi

is
irreducible, there exists bi ≥ 0 such that

B|mi
= −biQ|mi

.(3.2)

Next, let Γl
ik ∈ m∗

i ⊗m∗
k ⊗ml be the tensor

Γl
ik(X,Y ) := πl([X,Y ]), X ∈ mi, Y ∈ mk,

and denote by γl
ik the squared norm of Γl

ik with respect to Q. Thus,

γl
ik :=

∑
Q([eιi , eιk ], eιl)

2,(3.3)

where {ej}nj=1 is a Q-orthonormal basis of m adapted to the decomposition (2.3),
and where the sum is taken over all ιi, ιk, and ιl such that eιi ∈ mi, eιk ∈ mk,
and eιl ∈ ml. The γl

ik are often called the structure constants of M . Since Q is
AdG(G)-invariant, it follows that

(3.4) Q([X,Y ], Z) = Q(Y, [X,Z]), X, Y, Z ∈ g.

It is, therefore, evident that γl
ik is symmetric in all three indices.

For the third piece of notation, fix a Q-orthonormal basis {wj}qj=1 of the Lie

algebra h. The irreducibility of AdG(H)|mi
implies the existence of ζi ≥ 0 such

that the Casimir operator

Cmi,Q|h := −
q∑

j=1

adwj ◦ adwj

acting on mi satisfies

Cmi,Q|h = ζi id.(3.5)

Remark 3.2. If ζi vanishes, then AdG(H) is trivial on mi and the dimension of mi

equals 1. To see this, simply observe that

Q(Cmi,Q|hek, ek) = −
q∑

j=1

Q([wj , [wj , ek]], ek) = −
q∑

j=1

Q([wj , ek], [wj , ek]).

If (3.5) holds with ζi = 0, the above formula implies that [wj , ek] = 0 for all k,
which means that adwj = 0 on mi. It follows that AdG(H) is trivial and mi is
1-dimensional by irreducibility. Note also that ζ1 and ζ2 cannot vanish together
when s = 2 in (2.3). This would imply that dimM = 2, contradicting (2.1).
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The constants (3.1) are related by the formula [44, Lemma (1.5)]

bi = 2ζi +
1

di

s∑
k,l=1

γl
ik,(3.6)

where di is given by (2.4). The following well-known result is adapted from [33,
Lemma 1.1]. We include the proof since our notation and assumptions are somewhat
different (e.g., we do not assume G is semisimple, and we work with (0, 2)-type and
not (1, 1)-type tensors).

Lemma 3.3. Suppose (2.5) holds. Let g ∈ M be given by

g =
s∑

i=1

xiπ
∗
iQ, xi > 0.(3.7)

Then

(3.8) Ric g =

s∑
i=1

riπ
∗
iQ,

where

ri =
bi
2
+

s∑
j,k=1

γi
jk

4di

( x2
i

xjxk
− 2

xj

xk

)
.

Proof. Since g is G-invariant, so is Ric g, which means (3.8) holds. The i-th com-
ponent of Ric g equals [6, Corollary 7.38]

ri = −1

2
B(X,X)− 1

2

n∑
j=1

g([X, ej ]m, [X, ej ]m)(3.9)

+
1

4

n∑
j,k=1

g([ej , ek]m, X)2,(3.10)

where X ∈ mi is any vector such that Q(X,X) = 1, the subscript m denotes the g-
orthogonal projection onto m, and {ej}nj=1 is a g-orthonormal basis of m adapted to
the decomposition (2.3). Note that the vector Z in [6, Corollary 7.38] is identically
zero for G admitting a bi-invariant Haar measure [6, p. 184] (in particular for G
compact).

Define

I(i) := {ι : eι ∈ mi}.
In formula (3.9), set X =

√
xieιi for some ιi ∈ I(i). By (3.2),

ri =
bi
2
g(eιi , eιi)−

1

2

n∑
j=1

xig([eιi , ej ]m, [eιi , ej ]m) +
1

4

n∑
j,k=1

xig([ej , ek]m, eιi)
2

=
bi
2
− 1

2

n∑
j,k=1

xig(g([eιi , ej ], ek)ek, g([eιi , ej ], ek)ek) +
1

4

n∑
j,k=1

xig([ej , ek], eιi)
2

=
bi
2
− 1

2

n∑
j,k=1

xig([eιi , ej ], ek)
2 +

1

4

n∑
j,k=1

x3
iQ([ej , ek], eιi)

2.
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Hence,

diri =
∑

ιi∈I(i)

ri =
dibi
2

− 1

2

∑
ιi∈I(i)

n∑
j,k=1

xig([eιi , ej ], ek)
2

+
1

4

∑
ιi∈I(i)

n∑
j,k=1

x3
iQ([ej , ek], eιi)

2.

Observe that the vectors {ẽj}nj=1 defined by

ẽιl =
√
xleιl , ιl ∈ I(l), l ∈ {1, . . . , s},

form a Q-orthonormal basis of m. Thus,

ri =
bi
2
− 1

2di

s∑
j,k=1

xk

xj

∑
Q([ẽιi , ẽιj ], ẽιk)

2 +
1

4di

s∑
j,k=1

x2
i

xjxk

∑
Q([ẽιj , ẽιk ], ẽιi)

2

=
bi
2
− 1

2di

s∑
j,k=1

xk

xj
γk
ij +

1

4di

s∑
j,k=1

x2
i

xjxk
γk
ij ,

where the sums without limits are taken over all ιi∈I(i), ιj∈I(j), and ιk∈I(k). �

The next lemma is a special case of a claim from the proof of [44, Theorem (2.2)].
Recall that we assume s > 1 in the decomposition (2.3).

Lemma 3.4. Suppose that H is maximal in G. Then, for any i ∈ {1, . . . , s}, there
exists some k ∈ {1, . . . , s} \ {i} such that

γk
ii > 0.

Proof. We give the proof for the case s = 2 which generalizes in an obvious way. The
assumption is equivalent to h being a maximal Lie subalgebra of g. In particular,
h ⊕ m1 cannot be a Lie subalgebra of g, so π2([m1,m1]) 
= {0}, i.e., γ2

11 
= 0.
Similarly, γ1

22 
= 0 since h⊕m2 cannot be a Lie subalgebra of g. �

The next result implies that any G-invariant metric with definite Ricci curvature
must actually have positive Ricci curvature if H is maximal.

Lemma 3.5. Suppose that g ∈ M satisfies Ric g = cT for some c ∈ R and T ∈ M.
Then c ≥ 0. If H is maximal in G, then c > 0.

Proof. If c < 0, Bochner’s theorem [6, Theorem 1.84] implies that there are no
Killing fields, so G is trivial and M is a point. By the same theorem, if c = 0, then
the connected component of the identity in the isometry group of (M, g) is a torus.
Since every Lie subgroup of a torus is abelian, G must be abelian. Thus, γk

ij = 0
for all i, j, k, contradicting Lemma 3.4. �

Whenever s=2 andH is not maximal in G, the prescribed (positive-semidefinite)
Ricci curvature equation is completely understood [36, Proposition 3.1]. We only
need to state the result for prescribed positive-definite Ricci curvature. Recall that
ζ1, ζ2 ≥ 0 are given by (3.5).

Proposition 3.6. Suppose s = 2 in (2.3). Consider a metric T ∈ M given
by (2.6). Let G have a connected Lie subgroup K satisfying (2.9) and (2.10).
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Assume (2.11) holds. A metric g ∈ M such that Ric g = cT for some c > 0 exists
if and only if (

ζ2 +
γ2
22

4d2
+

γ1
22

d2

)
z1 >

(
ζ1 +

γ1
11

4d1

)
z2.(3.11)

When g exists, it is unique up to scaling.

Remark 3.7. It is common in the literature on compact homogeneous spaces to make
the assumption that the fundamental group is finite (see, e.g., [24,43]). Theorem 3.1
and Proposition 3.6 imply that all homogeneous spaces considered in this article
have finite fundamental groups since they admit metrics of positive Ricci curvature.

4. Two irreducible isotropy summands

This section contains the proofs of Theorems 2.1 (Ricci iteration for s = 2)
and 2.4 (ancient Ricci iterations for s = 2), as well as two examples. Since it is
easy to get lost in the technical lemmas we provide here a quick roadmap to this
section: §4.1 gives several easy results relating the prescribed curvature equation
to zeros of polynomials when s = 2; §4.2 proves Theorem 2.1(i) concerning the
Ricci iteration with maximal isotropy, the main technical tool being Lemma 4.8,
which provides monotonicity of the zeros of the polynomials from §4.1; §4.3 proves
Theorem 2.1(ii) concerning the Ricci iteration with nonmaximal isotropy, where
Lemma 4.10 provides the desired monotonicity; §4.4 proves Theorem 2.4 concerning
the classification of ancient Ricci iterations, making use of both Lemmas 4.8 and
4.10; and §4.5 concludes this section with a collection of examples.

4.1. Polynomial equations for the prescribed curvature problem. We as-
sume the number s in (2.3) equals 2. Thus, m admits a Q-orthogonal AdG(H)-
invariant decomposition

m = m1 ⊕m2

such that AdG(H)|m1
and AdG(H)|m2

are irreducible.
As in (3.7) and (2.6), we will typically use the notation xi for the components of

a Riemannian metric g ∈ M whose Ricci curvature is prescribed and the notation
zi for the components of the “Ricci candidate” T . The letter α (possibly with a
subscript) will usually stand for the ratio of the two components of a tensor.

We further impose the assumption (2.5). The formula for the Ricci curvature in
this case simplifies.

Lemma 4.1. Suppose that s = 2 in (2.3) and that (2.5) holds. If g ∈ M is given
by (3.7), then Ric g satisfies (3.8) with

r1 =
b1
2

− γ1
11

4d1
− γ1

22

2d1
+

γ1
22

4d1
α2 − γ2

11

2d1

1

α
,

r2 =
b2
2

− γ2
22

4d2
− γ2

11

2d2
+

γ2
11

4d2

1

α2
− γ1

22

2d2
α,(4.1)

where α = x1

x2
.

Proof. The assumption (2.5) implies that all G-invariant tensors are completely
determined by two real numbers, as in (2.6). Thus, (3.8) holds. Using Lemma 3.3,
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we compute

r1 =
b1
2

+
1

4d1

2∑
j,k=1

x2
1

xjxk
γ1
jk −

1

2d1

2∑
j,k=1

xj

xk
γ1
jk

=
b1
2

+
1

4d1

(
γ1
11 +

x2
1

x2
2

γ1
22 + 2

x1

x2
γ1
12

)
− 1

2d1

(
γ1
11 + γ1

22 +
x1

x2
γ1
12 +

x2

x1
γ1
21

)

=
b1
2

− γ1
11

4d1
− γ1

22

2d1
+

γ1
22

4d1
α2 − γ2

11

2d1

1

α
,

as desired. The formula for r2 is proved analogously. �

The next result reduces the prescribed Ricci curvature equation to a single poly-
nomial equation. It provides a simple test for whether tensors given by (3.7)
and (2.6) form a metric-curvature pair. As we explain in Lemma 4.3, the roots
of the polynomial P (x, y) appearing in the next result are related to Einstein met-
rics on M .

Lemma 4.2. Suppose that s = 2 in (2.3) and that (2.5) holds. Let g ∈ M and
T ∈ M be given by (3.7) and (2.6). The equality Ric g = cT holds for some c ≥ 0
if and only if P (x1/x2, z1/z2) = 0, where

P (x, y) := d2γ
1
22x

4 + 2d1γ
1
22yx

3 + (θ1 − yθ2)x
2 − 2d2γ

2
11x− d1γ

2
11y(4.2)

and

θ1 := 2d1d2b1 − d2γ
1
11 − 2d2γ

1
22, θ2 := 2d1d2b2 − d1γ

2
22 − 2d1γ

2
11.(4.3)

Proof. Suppose that Ric g = cT for some c ≥ 0. Lemma 4.1 implies that

b1
2

− γ1
11

4d1
− γ1

22

2d1
+

γ1
22

4d1
α2 − γ2

11

2d1

1

α
= cz1,

b2
2

− γ2
22

4d2
− γ2

11

2d2
+

γ2
11

4d2

1

α2
− γ1

22

2d2
α = cz2,(4.4)

where α = x1

x2
. Since T ∈ M, the numbers z1, z2 are positive, and so

(4.5)
b1
2
− γ1

11

4d1
− γ1

22

2d1
+

γ1
22

4d1
α2 − γ2

11

2d1

1

α
=

z1
z2

(b2
2
− γ2

22

4d2
− γ2

11

2d2
+

γ2
11

4d2

1

α2
− γ1

22

2d2
α
)
.

Multiplying by 4d1d2α
2 and rearranging yields P (x1/x2, z1/z2) = 0.

Conversely, suppose that P (x1/x2, z1/z2) = 0, and hence (4.5) holds. Define c
as the left-hand side of (4.5) divided by z1. Then, it follows from (4.5) that (4.4)
holds. By Lemma 3.5, c ≥ 0. �

Denote, for x > 0,

(4.6) gx := xπ∗
1Q+ π∗

2Q ∈ M.

The following result characterizes Einstein metrics in M; cf. [44, §3] and [24, §3].

Lemma 4.3. Suppose that s = 2 in (2.3) and that (2.5) holds. Then P (x, x) = 0
if and only if gx is Einstein with Ric gx = cgx for some c ≥ 0.

Proof. This follows from Lemma 4.2. �

We state two identities that follow directly from (3.6). In particular, they show
that θ1, θ2 are nonnegative.
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Lemma 4.4. One has (recall (4.3))

θ1 = 4d1d2ζ1 + d2γ
1
11 + 4d2γ

2
11, θ2 = 4d1d2ζ2 + d1γ

2
22 + 4d1γ

1
22.

4.2. Ricci iteration with maximal isotropy. Let us prove Theorem 2.1(i).
We assume H is maximal in G. According to [44], in this case, a G-invariant
Einstein metric on M is known to exist. Since P (x, x) factors as x times a cubic
polynomial, Lemma 4.3 implies that there are at most three such metrics, up to
scaling; cf. [24, §3].

Remark 4.5. Suppose g∞ is the limit of the sequence {gi}i∈N in Theorem 2.1(i).
When there exists more than one G-invariant Einstein metric (up to scaling) on M ,
the proof we are about to present identifies g∞. More precisely, suppose ε1 ≤ ε2 ≤ ε3
are positive numbers such that Ric gεi = cig

εi with ci > 0 for all i ∈ {1, 2, 3}.
Assume every x > 0 satisfying the equation Ric gx = cgx for some c > 0 coincides
with ε1, ε2, or ε3. In the notation of (4.10) and (4.8), if αT ∈ (0, ε1), then g∞ is
proportional to gε1 ; if αT ∈ (ε3,∞), then g∞ is proportional to gε3 ; if αT ∈ (εi, εi+1)
(i ∈ {1, 2}), then g∞ is proportional to gεi or gεi+1 depending on whether α2 < αT

or α2 > αT , respectively.

Proof of Theorem 2.1(i). The existence of the sequence follows from Theorem 3.1,
while the uniqueness is the content of Lemma 4.6 established below. To prove the
convergence, suppose

(4.7) gi = x
(i)
1 π∗

1Q+ x
(i)
2 π∗

2Q,

and let

(4.8) αi := x
(i)
1 /x

(i)
2 .

Lemma 4.8 below demonstrates that {αi}i∈N is monotone, bounded below by
min{α1, α−} and bounded above by max{α1, α+} (recall (2.8)). Consequently,
this sequence has a positive limit α∞. Thus, if the limits

x
(∞)
1 := lim

i→∞
x
(i)
1 and x

(∞)
2 := lim

i→∞
x
(i)
2

both exist and are finite, then they must be simultaneously positive or zero. Note
that

Ric(gi+1/x
(i+1)
2 ) = Ric gi+1 = gi,

i.e.,

Ric(αi+1π
∗
1Q+ π∗

2Q) = x
(i)
1 π∗

1Q+ x
(i)
2 π∗

2Q.

This shows that the limits indeed both exist and are finite, as the left-hand side
has a well-defined limit by Lemma 4.1 (as α∞ > 0). We thus have

Ric(α∞π∗
1Q+ π∗

2Q) = x
(∞)
1 π∗

1Q+ x
(∞)
2 π∗

2Q.

By Lemma 3.5 the right-hand side cannot vanish; we conclude that x
(∞)
1 , x

(∞)
2 > 0.

Finally, let

g∞ = x
(∞)
1 π∗

1Q+ x
(∞)
2 π∗

2Q.

We have shown that {gi}i∈N converges to g∞, and as explained in §2.1, this conver-
gence is smooth. By passing to the limit in formula (1.1), we see that Ric g∞ = g∞,
concluding the proof. �
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Lemma 4.6. Suppose that s = 2 in (2.3) and that (2.5) holds. Choose T ∈ M.
Up to scaling, there exists a unique metric g ∈ M whose Ricci curvature equals cT
for some c > 0.

Proof. The existence of g follows from Theorem 3.1. To prove the uniqueness, fix
b > 0 and set

Pb(x) := P (x, b).

By Lemma 4.2, it suffices to show that Pb(x) = 0 for at most one x ∈ (0,∞).
The leading coefficient of Pb (i.e., the coefficient of x4) is positive by Lemma 3.4,

so the leading coefficient of the quadratic polynomial R2 := d2

dx2Pb(x) is positive.
The x coefficient of R2 is nonnegative. Thus, R2 has no more than one positive
root; equivalently, R1 := d

dxPb(x) has at most one critical point, in (0,∞). Since
R1(0) < 0 and limx→∞ R1(x) = ∞ it follows that R1 has at most one positive root.
Consequently, the function Pb has at most one critical point in (0,∞). Again, since
Pb(0) ≤ 0 and limx→∞ Pb(x) = ∞, it follows that Pb has no more than one positive
root. �
Remark 4.7. Regarding the previous lemma, we remark that in the context of the
Ricci iteration we have a naturally imposed scaling normalization given by (1.1).
Namely, assume that the hypotheses of Theorem 2.1(i) hold. Let g be a metric
such that Ric g = gi−1. Then, Ric cg = gi−1 for any c > 0. However, according to
Lemma 4.6, there is at most one c > 0 such that Ric gi+1 = cg is solvable for some
gi+1, and we set gi = cg.

Let T, g, h ∈ M be given by (2.6), (3.7), and

h := y1π
∗
1Q+ y2π

∗
2Q.(4.9)

Denote

αT :=
z1
z2

, αg :=
x1

x2
, αh :=

y1
y2

.(4.10)

The next result gives the monotonicity needed in the proof of Theorem 2.1. Before
stating it, we need to point out that, as Lemma 4.3 shows, there are at most three
numbers x > 0 such that gx ∈ E (recall (2.7) and (4.6)).

Lemma 4.8. Suppose that H is maximal in G, that s = 2 in (2.3), and that (2.5)
holds. Let the metrics T, g, h ∈ M given by (2.6), (3.7), and (4.9) satisfy Ric g = cT
for some c > 0 and Rich = g. Suppose ε, ε1, ε2 > 0 are such that gε, gε1 , gε2 ∈ E
and gx 
∈ E whenever x ∈ (ε1, ε2). Then:

(i) If αT ≥ ε, then αg ≥ ε.
(ii) If αT ≤ ε, then αg ≤ ε.
(iii) If αT ≥ α+ (recall (2.8)), then αT ≥ αg ≥ α+.
(iv) If ε1 ≤ αg ≤ αT ≤ ε2, then ε1 ≤ αh ≤ αg.
(v) If ε1 ≤ αT ≤ αg ≤ ε2, then αg ≤ αh ≤ ε2.
(vi) If αT ≤ α− (recall (2.8)), then αT ≤ αg ≤ α−.

Proof. (i) The function P (ε, y) is decreasing in y. Indeed, since Ric gε = cgε for
some c > 0, the second line in (4.1) implies that

c =
b2
2

− γ2
22

4d2
− γ2

11

2d2
+

γ2
11

4d2

1

ε2
− γ1

22

2d2
ε

= (θ2 + d1γ
2
11

1

ε2
− 2d1γ

1
22ε)/4d1d2.
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Thus,

∂

∂y
P (ε, y) = 2d1γ

1
22ε

3 − θ2ε
2 − d1γ

2
11 = −4d1d2ε

2c < 0,

as claimed. Note that P (ε, ε) = 0 by Lemma 4.3. If αT ≥ ε, then

P (ε, αT ) ≤ P (ε, ε) = 0.(4.11)

As in the proof of Lemma 4.6, the leading coefficient of the polynomial PαT
(x) =

P (x, αT ) is positive, so limx→∞ PαT
(x) = ∞. From this and (4.11), it follows

that there exists x ≥ ε such that PαT
(x) = 0. However, Lemma 4.2 implies that

P (αg, αT ) = 0, and Lemma 4.6 then implies that x = αg, so αg ≥ ε as desired.
(ii) The argument of (i) gives that P (ε, αT ) ≥ 0. Note that P (0, αT ) = −d1γ

2
11αT

< 0 by Lemma 3.4. Thus, P (x, αT ) = 0 for some x ∈ (0, αT ], and the rest of the
proof follows that of (i).

(iii) Suppose αT ≥ α+. Setting ε = α+ in (i), we obtain

(4.12) αg ≥ α+.

It remains to show that αg ≤ αT . Formulæ (4.1) yield

αg − αT = αg −
θ1α

2
g + d2γ

1
22α

4
g − 2d2γ

2
11αg

θ2α2
g + d1γ2

11 − 2d1γ1
22α

3
g

=
αg

(
− (2d1 + d2)γ

1
22α

3
g + θ2α

2
g − θ1αg + (d1 + 2d2)γ

2
11

)
θ2α2

g + d1γ2
11 − 2d1γ1

22α
3
g

.

Since Ric g = cT , the denominator is a positive multiple of the second component
of T , i.e., is itself positive. Thus, the sign of αg − αT coincides with the sign of

P̃ (αg), where

P̃ (x) := −(2d1 + d2)γ
1
22x

3 + θ2x
2 − θ1x+ (d1 + 2d2)γ

2
11, x ∈ R.

Note that P̃ (x) is a polynomial whose leading coefficient is negative. To prove that
αg ≤ αT , it suffices to show that αg is greater than or equal to the largest root of
this polynomial. Since

P̃ (x) = −P (x, x)/x

for all x > 0, the positive roots of P̃ (x) are precisely all ε such that gε ∈ E , and we
are done by (4.12).

(iv) Assume ε1 ≤ αg ≤ αT ≤ ε2. By assumption,

(4.13) P (x, x) 
= 0, x ∈ (ε1, ε2).

By (i) and (ii), ε1 ≤ αh ≤ ε2. It suffices to show that αh − αg ≤ 0 or, equivalently,

that P̃ (αh) ≤ 0. Since P̃ (ε1) = P̃ (ε2) = 0, assume that αh ∈ (ε1, ε2). We may also
assume ε1 < αg < αT < ε2 (otherwise, Lemma 4.3 implies g and h are Einstein,

which means αg = αh, and we are done). By (4.13), P̃ (x) does not change sign in

the interval (ε1, ε2). Therefore, it suffices to prove that P̃ (αg) < 0. But the sign of

P̃ (αg) coincides with the sign of αg − αT . Since αg < αT by assumption, we are
done.

(v) The proof is essentially identical to that of (iv).
(vi) The proof is essentially identical to that of (iii). �
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4.3. Ricci iteration with nonmaximal isotropy. Let us prove Theorem 2.1(ii).
We assume G has a connected Lie subgroup K such that (2.9) holds. The number
s in (2.3) is still 2, and (2.10) is satisfied. Since k is a Lie algebra, [k, k] ⊂ k, and as
k is Q-orthogonal to m2,

(4.14) γ2
11 = 0.

The requirement (2.11) is equivalent to the formula

(4.15) γ1
22 > 0.

If γ1
22 = 0, then Lemma 4.1 implies that all the metrics in M have the same Ricci

curvature, namely,

(4.16)
(b1
2

− γ1
11

4d1

)
π∗
1Q+

(b2
2

− γ2
22

4d2

)
π∗
2Q.

In this case, the Ricci iteration exists if and only if the initial metric is equal
to (4.16) and hence is Einstein.

Because (4.14) holds, the expression P (x, x) is now a quadratic polynomial in x
times x2. Hence Lemma 4.3 implies that there are at most two Einstein metrics in
E , up to scaling; cf. [24, §3].

Remark 4.9. By analogy with Remark 4.5, our proof Theorem 2.1(ii) identifies the
limit, g∞, of the sequence {gi}i∈N, provided this sequence exists. More precisely,
suppose there are two distinct Einstein metrics of volume 1 in M. In the notation
of (2.8) and (4.10), if αT ∈ (0, α−), then g∞ is proportional to gα− ; if αT ∈ (α−,∞),
then g∞ is proportional to gα+ .

Proof of Theorem 2.1(ii). (b) Suppose AdG(H)|m1
is nontrivial, E 
= ∅, and αT ≥

α−. Then by Remark 3.2 one has

(4.17) ζ1 > 0.

Lemma 4.10(i) below implies that a sequence {gi}i∈N satisfying (1.1) exists and
is unique. Let αi be as in (4.7) and (4.8). Lemma 4.10(i) also implies that the
sequence {αi}i∈N is monotone and

α− ≤ αi ≤ max{α1, α+}, i ∈ N.

Therefore, this sequence must converge to some number α∞. It is clear that
α∞ ≥ α− > 0. An alternative way to see that α∞ > 0 is to observe that, by
Proposition 3.6,

(4.18) αi >
ζ1 +

γ1
11

4d1

ζ2 +
γ2
22

4d2
+

γ1
22

d2

=
η̃1
η̃2

, i ∈ N,

where η̃1 and η̃2 denote the numerator and the denominator of the middle expres-
sion. The positivity of α∞ then follows from (4.15) and (4.17).

As in the proof of Theorem 2.1(i), the Ricci iteration equation (1.1) implies that

x
(∞)
1 = lim

i→∞
x
(i)
1 and x

(∞)
2 = lim

i→∞
x
(i)
2
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exist and are finite. Since α∞ > 0, these limits are simultaneously positive or zero.
Plugging (4.14) into Lemma 4.1 gives

x
(i)
1 :=

b1
2

− γ1
11

4d1
− γ1

22

2d1
+

γ1
22

4d1
α2
i+1,

x
(i)
2 :=

b2
2

− γ2
22

4d2
− γ1

22

2d2
αi+1.(4.19)

Combining (4.19), (3.6), and (4.17) yields

x
(∞)
1 = ζ1 +

γ1
11

4d1
+

γ1
22

4d1
α2
∞ > 0,

and so x
(∞)
2 is positive. As in the proof of Theorem 2.1(i), it follows that the Ricci

iteration converges smoothly to some g∞ ∈ M. Passing to the limit shows that
g∞ ∈ E .

Assume now that αT < α−. Suppose the sequence {gi}i∈N exists. Then it must
be unique by Proposition 3.6. The corresponding sequence {αi}i∈N is monotone
nonincreasing by Lemma 4.10(i) and converges to some α∞. Because (4.18) holds,
the reasoning above shows that α∞ ∈ [η̃1/η̃2, α−) ⊂ (0, α−) and {gi}i∈N converges
to an Einstein metric g∞ proportional to gα∞ (recall (4.6)). But then gα∞ is
Einstein, which is impossible since α∞ < α−.

(a) Suppose AdG(H)|m1
is trivial. Lemma 4.10(ii) implies that a sequence

{gi}i∈N satisfying (1.1) exists and is unique. As before, let αi be as in (4.7)
and (4.8). Lemma 4.10 (ii) also implies that the sequence {αi}i∈N is monotone
and

min{α1, α−} = min{α1, α+} ≤ αi ≤ max{α1, α+} = max{α1, α−}, i ∈ N.

Therefore, {αi}i∈N must converge to some positive number α∞. As in the proof
of (b), we use this fact to show that {gi}i∈N converges to a G-invariant Einstein
metric on M . The uniqueness of such metrics up to scaling follows from the equality
α− = α+.

(c) Suppose E = ∅ and a sequence {gi}i∈N satisfying (1.1) exists. Lemma 4.10(iii)
shows that {αi}i∈N is monotone decreasing. Arguing as in the proof of the “if”
portion of (b), we arrive at a contradiction. �

Lemma 4.10. Suppose that s = 2 in (2.3) and that (2.5) holds. Consider a metric
T ∈ M given by (2.6). Let G have a connected Lie subgroup K satisfying (2.9).
Assume (2.10) and (2.11) hold.

(i) Suppose AdG(H)|m1
is nontrivial and E 
= ∅. Then:

(a) If αT ≥ α+, then there exists a metric g ∈ M, unique up to scaling,
such that Ric g = cT for some c > 0. Moreover, αT ≥ αg ≥ α+.

(b) If αT ∈ (α−, α+), then there exists g ∈ M, unique up to scaling, such
that Ric g = cT for some c > 0. Moreover, αT ≤ αg ≤ α+.

(c) If αT ≤ α− and Ric g = cT for some g ∈ M and c > 0, then αg ≤ αT .
(ii) Suppose AdG(H)|m1

is trivial. Then:
(a) The set E is nonempty, and the equality α− = α+ holds true.
(b) There exists a metric g ∈ M, unique up to scaling, such that Ric g =

cT for some c > 0.
(c) If αT ≥ α− = α+, then αT ≥ αg ≥ α− = α+.
(d) If αT ≤ α− = α+, then αT ≤ αg ≤ α− = α+.
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(iii) If E = ∅ and Ric g = T for some g ∈ M, then αT ≥ αg.

Remark 4.11. Lemma 4.10 can be proven in essentially the same way as Lemma 4.8.
We provide an alternative proof below, which some readers may find conceptually
simpler.

Proof. It will be convenient to use the slightly different normalization than (4.18):

ηi :=
2d22
d1γ1

22

η̃i, i ∈ {1, 2}.

Observe that η2 
= 0. Condition (3.11) means that z1/z2 > η1/η2.
(i)(a) The metric gα+ is Einstein. This fact and Proposition 3.6 imply that

α+ > η1

η2
, so our assumption gives αT > η1

η2
. One more application of Proposition 3.6

yields the existence and the uniqueness of g ∈ M such that Ric g = cT .
Next, we show that α+ ≤ αg. Lemmas 4.1 and 4.4, together with (4.14), give

αT =
η̃1 + γ1

22α
2
g/4d1

η̃2 − γ1
22αg/2d2

=
η1 +

1
2 (d2αg/d1)

2

η2 − d2αg/d1
,

so letting y = d2αg/d1, we obtain

y2 + 2αT y + 2η1 − 2η2αT = 0.

Consequently, αg = F (αT ) with

F (x) =
d1
d2

(√
x2 + 2η2x− 2η1 − x

)
, x ∈ (η1/η2,∞).

Because gα− and gα+ are Einstein, we have α− = F (α−) and α+ = F (α+). This
implies that

αg − α+ = F (αT )− F (α+).

Since αT ≥ α+, it suffices to demonstrate that F is an increasing function, to wit,

F ′(x) =
d1
d2

(
x+ η2 −

√
(x+ η2)2 − η22 − 2η1√

x2 + 2η2x− 2η1

)
> 0, x ∈ (η1/η2,∞).

Finally, let us prove that αg ≤ αT , i.e., F (αT ) ≤ αT , or

d1
d2

√
α2
T + 2η2αT − 2η1 ≤

(
1 +

d1
d2

)
αT .

Squaring the nonnegative expressions on both sides shows that αg ≤ αT if and only

if F̃ (αT ) ≥ 0 with

F̃ (x) =

(
1 + 2

d1
d2

)
x2 − 2

d21
d22

η2x+ 2
d21
d22

η1, x ∈ R.

When x > η1/η2, the formula F̃ (x) = 0 implies F (x) = x. For such x, the equality
F (x) = x holds if and only if x = α− or x = α+; cf. Lemma 4.3. To prove that

F̃ (αT ) ≥ 0, it suffices to show that αT is greater than or equal to the largest root

of the polynomial F̃ (x), i.e., αT ≥ α+. But this inequality holds by assumption.
(i)(b)–(i)(c) It suffices to repeat the arguments from the proof of (i)(a) with very

minor changes.
(ii)(a) Suppose AdG(H)|m1

is trivial. Then ζ1 = 0. Because m1 is irreducible, it
must be 1-dimensional. Ergo, the constants γ1

11 and η1 equal 0. Lemma 4.4 shows
that θ1 equals 0 as well. The expression P (x, x) (recall (4.2)) factors into x3 and a
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linear function of x with negative free term. Therefore, it vanishes for exactly one
positive x. Since P (α−, α−) = P (α+, α+) = 0 by Lemma 4.3, we conclude that
α− = α+.

(ii)(b) This claim is a direct consequence of Proposition 3.6 and the equality
η1 = 0.

(ii)(c)–(ii)(d)–(iii) It suffices to repeat the arguments from the proof of (i)(a)
with minor modifications. �

4.4. Ancient Ricci iterations. In this subsection, we prove Theorem 2.4. First,
we observe that a metric has positive Ricci curvature as soon as it is “sandwiched”
between two metrics with positive Ricci curvature.

Lemma 4.12. Suppose that s = 2 in (2.3) and that (2.5) holds. Let gi ∈ M and
αi > 0 be given by (4.7) and (4.8) for i = 1, 2, 3. Assume that α1 ≤ α2 ≤ α3. If
Ric g1 and Ric g3 are positive-definite, then so is Ric g2.

Proof. According to Lemma 4.1,

Ric gi = r
(i)
1 π∗

1Q+ r
(i)
2 π∗

2Q

with

r
(i)
1 = A1 +B1α

2
i −

C1

αi
,

r
(i)
2 = A2 +

B2

α2
i

− C2αi,(4.20)

where A1, A2, B1, B2, C1, C2 are constants independent of αi, and where B1, B2, C1,

C2 ≥ 0 in view of (3.3). By assumption, we have r
(1)
1 > 0. Since α2 ≥ α1, it follows

that r
(2)
1 ≥ r

(1)
1 > 0. Similarly, by assumption, r

(3)
2 > 0. Since α2 ≤ α3, it follows

that r
(2)
2 ≥ r

(3)
2 > 0. Thus, Ric g2 is positive-definite. �

In the nonmaximal setting we will use also the following result to guarantee
positivity of the Ricci tensor.

Lemma 4.13. Assume that s = 2 in (2.3) and that (2.5) holds. Suppose G has a
connected Lie subgroup K satisfying (2.9). Let (2.10) and (2.11) hold. If T ∈ M
satisfies (2.6) with z1/z2 ≤ α−, then RicT ∈ M.

Proof. When z1/z2 = α−, the result is obvious. Suppose that z1/z2 < α−. Since
γ2
11 = 0 by (4.14), Lemma 4.1 gives that RicT = r1π

∗
1Q+ r2π

∗
2Q with

r1 = A1 +B1(z1/z2)
2,

r2 = A2 − C2z1/z2,

where A1, A2, B1, C2 are constants independent of T . Moreover, B1, C2 > 0 by
(4.15), and

(4.21) A1 = θ1/4d1d2

(recall (4.3)). By Lemma 4.4, θ1 = 4d1d2ζ1 + d2γ
1
11 + 4d2γ

2
11 ≥ 0, so A1 ≥ 0.

Thus, r1 ≥ B1(z1/z2)
2 > 0, while r2 > A2 − C2α− > 0 since Ric gα− = gα− is

positive-definite. Thus, RicT ∈ M. �

As in the formulation of Theorem 2.4, we always assume T ∈ M is given by (2.6)
in the proof below.
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Proof of Theorem 2.4. (i) Suppose that the assumptions of Theorem 2.4(i) hold.
Let T satisfy α− < z1/z2 < α+. Applying Lemma 4.12 to the triple gα− , T, gα+

shows that RicT ∈ M since Ric gα− = gα− and Ric gα+ = gα+ are positive-definite.
Thus,

{T ∈ M : z1/z2 ∈ [α−, α+]} ⊂ M(2).

Next, let T satisfy α− < z1/z2 < α+, and set g0 := RicT ∈ M. According to
Lemma 4.8(ii), if we had α0 ≤ α− (recall (4.8)), we would also have αT ≤ α−. It
follows that α0 > α−. Similarly, according to Lemma 4.8(i), if we had α0 ≥ α+,
then we would have αg ≥ α+. It follows that α0 < α+. Thus, we may apply
Lemma 4.12 to the triple gα− , g0, g

α+ to conclude that g−1 := Ric g0 ∈ M, i.e.,

{T ∈ M : z1/z2 ∈ [α−, α+]} ⊂ M(3).

By induction, it follows that

{T ∈ M : z1/z2 ∈ [α−, α+]} ⊂ M(∞).

Moreover, when g1 ∈ M is such that α1 ∈ (α−, α+), the ancient Ricci iteration (1.2)
exists and α−i ∈ (α−, α+) for all i ∈ N ∪ {0}. Lemma 4.8(iv)–(v) implies that
the sequence {α−i}∞i=−1 is monotone. The arguments in the proof of Theorem
2.1(i) now apply verbatim to show that the limit of {g−i}∞i=−1 exists in the smooth
topology and is an Einstein metric.

Finally, suppose that T ∈ M(∞) and z1/z2 > α+. Then (1.2) with g1 = T is
well-defined. The arguments of the previous paragraph show that limi→∞ α−i = ∞,
or else α−i must converge to some α−∞ > α+ such that gα−∞ is an Einstein metric,
a contradiction. However, there exists C > 0 depending only on d1, d2, {γl

jk}2j,k,l=1,

b1, b2 such that r
(i)
2 < 0 if αi > C, by Lemma 4.1 (observing that γ1

22 > 0 by
Lemma 3.4). Thus, r(T ) < ∞. Similar reasoning shows that z1/z2 < α− implies

that r(T ) < ∞ (otherwise r
(i)
1 < 0 for some i). Thus, we obtain (2.13).

(ii) Suppose that the hypotheses of Theorem 2.4(ii) hold. First, assume that
AdG(H)|m1

is nontrivial and E 
= ∅. Suppose r(g1) ≥ 2, i.e., g0 := Ric g1 ∈ M.
As above, Lemma 4.8(i)–(ii) implies that α0 ∈ (α−, α+) when α1 ∈ (α−, α+).
Similarly, α0 < α− when α1 < α−.

If α1 < α−, then Lemma 4.10(i)(c) yields α1 < α0. Applying Lemma 4.12 to the
triple g1, g0, g

α− shows that g−1 := Ric g0 ∈ M since, by assumption, Ric gα− =
gα− and Ric g1 are positive-definite. Thus,

{T ∈ M(2) : z1/z2 < α−} ⊂ M(3).

By induction, it follows that

{T ∈ M(2) : z1/z2 < α−} ⊂ M(∞).

In addition, the ancient Ricci iteration (1.2) exists, and α−i ∈ (0, α−) for all i ∈
N ∪ {0}. We also have α−i < α−i−1.

If α1 ∈ (α−, α+) holds, then applying Lemma 4.12 to the triple gα− , g1, g
α+

shows that g0 := Ric g1 ∈ M since Ric gα− = gα− and Ric gα− = gα− are positive-
definite, so

{T ∈ M : α− ≤ z1/z2 ≤ α+} ⊂ M(2).

(Thus, there is no need to make the assumption Ric g1 ∈ M.) Lemma 4.10(i)(b)
implies that α1 > α0. As noted earlier, α0 ∈ (α−, α+). Therefore, applying
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Lemma 4.12 to the triple gα− , g0, g
α+ shows that g−1 := Ric g0 ∈ M, i.e.,

{T ∈ M : α− ≤ z1/z2 ≤ α+} ⊂ M(3).

By induction, it follows that

{T ∈ M : α− ≤ z1/z2 ≤ α+} ⊂ M(∞).

Also, the ancient Ricci iteration (1.2) exists and α−i ∈ (α−, α+) for all i ∈ N∪{0}.
Also, α−i > α−i−1.

The arguments in the proof of Theorem 2.1(ii) now apply verbatim to show that,
in both cases we just considered, i.e., when either g1 ∈ {T ∈ M(2) : z1/z2 < α−}
or g1 ∈ {T ∈ M : α− ≤ z1/z2 ≤ α+}, the limit of {g−i}∞i=−1 exists in the smooth
topology and is an Einstein metric. Moreover, similar arguments to those employed
in part (i) above show that actually

(4.22) {T ∈ M(2) : z1/z2 < α−} ∪ {T ∈ M : α− ≤ z1/z2 ≤ α+} = M(∞).

Indeed, γ1
22 > 0 by (4.15), and so the argument employed in part (i) goes through

in the same way to show that any T with z1/z2 > α+ has finite Ricci index, while
if z1/z2 < α− and T 
∈ M(2), then, of course, r(T ) = 1 < ∞. Finally, Lemma
4.13 allows us to replace M(2) in (4.22) by M since it shows that T ∈ M(2) when
z1/z2 < α−. This proves (2.15).

Suppose that AdG(H)|m1
is nontrivial and E is empty. Assume r(g1) ≥ 2. Then,

Lemma 4.10(iii) shows that α0 > α1. Arguing as in the previous paragraphs, we
show that r(g1) < ∞ (since γ1

22 > 0 by (4.15)). Thus, M(∞) = ∅.
Next, if AdG(H)|m1

is trivial, then α− = α+ > 0 (recall Lemma 4.10(ii)(a)).
Once again, since γ1

22 > 0 by (4.15), we see that any T with z1/z2 > α+ has finite
Ricci index. Suppose now T is such that z1/z2 < α+. Lemma 4.13 implies that
r(T ) ≥ 2. Denote g1 := T and g0 := RicT . Lemma 4.10(ii)(d) shows that α0 < α1,
and applying Lemma 4.13 again, we obtain r(T ) ≥ 3. By induction, (2.14) must
hold. Also, the ancient Ricci iteration (1.2) exists, and α−i ∈ (0, α−) for all i ∈
N∪{0}. We have α−i > α−i−1 and, therefore, limi→∞ α−i = 0. To understand the
limit of the sequence {g−i}∞i=−1, we analyze more closely formulæ (4.20). Because

AdG(H)|m1
is trivial, ζ1 = 0 = γ1

11. By (4.14), γ2
11 = 0. Lemma 4.4, together

with (4.21) and (4.15), thus implies that

A1 = B2 = C1 = 0,

4d1d2A2 = θ2 = 4d1d2ζ2 + d1γ
2
22 + 4d1γ

1
22 ≥ 4d1γ

1
22 > 0.

Consequently, {g−i}∞i=−1 converges smoothly to the degenerate tensor A2π
∗
2Q. This

collapsed limit is the pull-back of a metric gE on G/K under the inclusion map
G/K ↪→ G/H. Since G/K is isotropy irreducible (i.e., s = 1 for it), all G-invariant
metrics on it, and hence also gE , are Einstein. Finally, (G/H, g−i) must converge in
the Gromov–Hausdorff topology to (G/K, gE) [10, Proposition 2.6]. This concludes
the proof of Theorem 2.4. �

4.5. Examples. In this subsection, we assume that the group G is simple and that
the inner product Q coincides with −B, the negative of the Killing form. Let (2.9)
and (2.10) hold for some connected Lie subgroup K < G with Lie algebra k. We
first consider a situation where AdG(H)|m1

is trivial.
Recall that di denotes the dimension of the i-th summand in the decomposi-

tion (2.3). The numbers γk
ij are the structure constants of M defined by (3.3). The
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constant ζi is the eigenvalue of the Casimir operator on mi (see (3.5)). It is 0 if and
only if AdG(H)|mi

is trivial. As Lemma 4.3 shows, the Einstein metrics in M are
characterized by the solutions of the equation P (x, x) = 0, where the polynomial
P (x, y) is given by (4.2).

Example 4.14 (Collapsing). Suppose

G = SO(2m), K = U(m), H = SU(m), m ∈ N ∩ [3,∞).

We identify K and H with subgroups of G in the natural way. The reader will
find a description of the isotropy representation of G/H in [24, Example I.24]. In
particular, AdG(H)|m1

is trivial, and we have

ζ1 = 0, d1 = 1, d2 = m2 −m.

Because m1 is 1-dimensional, the constant γ1
11 equals 0. Formulæ (3.6) and (4.14)

imply that

γ1
22 = d1 = 1.

Since G/K is symmetric, the inclusion [m2,m2] ⊂ k holds, and γ2
22 vanishes. The

expression P (x, x) (recall (4.2) and (4.14)) is now given by the formula

P (x, x) = d2γ
1
22x

4 + 2d1γ
1
22x

4 + (2d1d2 − 2d2γ
1
22 − 2d1d2x)x

2

= (m2 −m+ 2)x4 − 2(m2 −m)x3.

Lemma 4.3 implies (recall (2.8)) that

α− = α+ =
2(m2 −m)

m2 −m+ 2
.

Theorem 2.1(ii)(a) describes the Ricci iteration on M . It shows that, given T ∈ M,
there exists a unique sequence {gi}i∈N satisfying (1.1) for all i ∈ N and g1 = cT
for some c > 0. This sequence converges to an Einstein metric proportional to
gα− = gα+ (recall (4.6)). Theorem 2.4(ii)(a) shows that

M(∞) =
{
T ∈ M : z1/z2 ≤ 2(m2 −m)

m2 −m+ 2

}
,

where z1, z2 are from (2.6). By formula (3.6),

ζ2 =
1

2d2
(−2γ1

22 + d2) =
m2 −m− 2

2(m2 −m)
.

When g1 ∈ M(∞), the ancient Ricci iteration {g−i}∞i=−1 given by (1.2) converges
smoothly to the degenerate metric(

ζ2 +
γ1
22

d2

)
π∗
2Q = −1

2
π∗
2B.

Then, SO(2m)/ SU(m) collapses to SO(2m)/U(m). Note that dimSO(6)/SU(3)=7.

For the next example, we introduce some additional notation largely follow-
ing [44, §3]. The space K/H may not be effective, and we denote by K ′ the quotient
of K acting effectively on K/H. Assume that K ′ is semisimple and Bk′ = αB|k′
for some α > 0, where k′ is the Lie algebra of K ′ and Bk′ is the Killing form of k′.
Consider two Casimir operators

Cm1,−Bk′ |h := −
qH∑
j=1

aduj ◦ aduj , Cm2,−B|k := −
qK∑
j=1

advj ◦ advj ,
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where {uj}qHj=1 is an orthonormal basis of h with respect to −Bk′ |h, and {vj}qKj=1 is

an orthonormal basis of k with respect to −B|k. These operators have domains m1

and m2, respectively. Let ζ
∗
1 and ζ∗2 be the numbers such that

Cm1,−Bk′ |h = ζ∗1 id, Cm2,−B|k = ζ∗2 id.

As shown in [44, p. 188],

ζ1 = αζ∗1 ,

γ1
22 = d1(1− α),

γ1
11 = d1 − γ1

22 − 2d1ζ1 = d1α(1− 2ζ∗1 ),

γ2
22 = d2 − 2d2ζ

∗
2 .(4.23)

Example 4.15 (Noncollapsing). Assume

G = SO(2m− 1), K = SO(2m− 2), H = U(m− 1), m ∈ N ∩ [3,∞).

We identify K and H with subgroups of G in the natural way. For descriptions of
the isotropy representation of G/H, see [44, Example 6] and [24, Example I.18].
Let us first find the relevant constants. We have

α =
2m− 4

2m− 3
, ζ∗1 = ζ∗2 =

1

2
, d1 = (m− 1)(m− 2), d2 = 2(m− 1);

see [24, p. 337]. In light of (4.23), this yields

γ1
22 =

(m− 1)(m− 2)

2m− 3
, γ1

11 = γ2
22 = 0.

The expression P (x, x) (recall (4.2) and (4.14)) is now given by the formula

P (x, x) = d2γ
1
22x

4 + 2d1γ
1
22x

4 + (2d1d2 − 2d2γ
1
22 − 2d1d2x)x

2

= (d2 + 2d1)γ
1
22x

4 − 2d1d2x
3 + 2d2(d1 − γ1

22)x
2

=
2(m− 1)3(m− 2)

2m− 3
x4 − 4(m− 1)2(m− 2)x3 +

8(m− 1)2(m− 2)2

2m− 3
x2.

The equality P (x, x) = 0 holds for some x > 0 if and only if

m− 1

2m− 3
x2 − 2x+

4(m− 2)

2m− 3
= 0.(4.24)

This is a quadratic equation in x with discriminant

D =
4

(2m− 3)2
.

Its solutions are the positive numbers

α± =
(2m− 3)

(
1±

√
D/4

)
m− 1

=
2m− 3± 1

m− 1
.

These numbers satisfy (2.8). The representation AdG(H)|m1
is nontrivial. Indeed,

otherwise, the irreducibility of AdG(H)|m1
would imply that d1 = 1, which is

impossible for any choice of m. Theorem 2.1(ii)(b) describes the Ricci iteration
on M . In particular, it shows that a sequence {gi}i∈N satisfying (1.1) for all i ∈ N

and g1 = cT for some c > 0 exists if and only if (recall (4.10))

αT ≥ α− =
2m− 4

m− 1
∈ [1, 2).
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Theorem 2.4(ii)(b) describes the ancient Ricci iterations on M . It demonstrates
that

M(∞) =
{
T ∈ M : z1/z2 ≤ α+ = 2

}
,

where z1, z2 are given by (2.6). Note that dimSO(5)/U(2) = 6.

5. Relative compactness for maximal isotropy

This section contains the proof of Theorem 2.6. We no longer impose an upper
bound on the number of summands in the isotropy representation. Nor do we
require the pairwise inequivalence of the summands.

Remark 5.1. The arguments in this section actually yield a statement that is
stronger than the relative compactness of the sequences {gi}i∈N and {g−i}∞i=−1 sat-
isfying the iteration equation (1.1) and the ancient iteration equation (1.2). Namely,
consider the set

Ξ = {h ∈ M : h = Ric h̃ for some h̃ ∈ M and S(h) ≥ 0},(5.1)

where S(h) denotes the scalar curvature of h. We show that this set is compact in
the topology it inherits fromM. Of course, if {gi}i∈N satisfies (1.1) (or, if {g−i}∞i=−1

satisfies (1.2)), then {gi}∞i=2 (or {g−i}∞i=0) lies in Ξ.

The proof of Theorem 2.6 will be based on the following three lemmas. Denote

Θ := {X ∈ TμM : Q(X,X) = 1},
the Q-unit sphere in TμM .

Lemma 5.2. Suppose H is maximal in G. If g ∈ M has nonnegative scalar
curvature, then

infX∈Θ g(X,X)

supX∈Θ g(X,X)
≥ a,

for some constant a ∈ (0, 1] depending only on G, H, and Q.

Proof. Choose the decomposition (2.3) so that (3.7) is satisfied with x1 ≤ · · · ≤ xs

(see [44, p. 180]). Consider the G-invariant metric

ĝ :=
1

xs
g

on M . By definition, infX∈Θ ĝ(X,X) ≤ 1 and supX∈Θ ĝ(X,X) = 1. According
to [36, Lemma 2.4], these formulæ imply the inequality

S(ĝ) ≤ a1

(x1

xs

)−1

− a2

((x1

xs

)− 2s−1

2s−1−1
+ 1

)

≤ a1

(x1

xs

)−1

− a2

(x1

xs

)− 2s−1

2s−1−1
.

Here, S(ĝ) denotes the scalar curvature of ĝ, and a1, a2 > 0 are constants depending
only on G, H, and Q. As S(g) ≥ 0, also S(ĝ) ≥ 0, and

a2

(x1

xs

)− 2s−1

2s−1−1 ≤ a1

(x1

xs

)−1

,
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so

infX∈Θ g(X,X)

supX∈Θ g(X,X)
=

x1

xs
≥

(a2
a1

)2s−1−1

,

as desired. �

Lemma 5.3. Let H be maximal in G. Suppose {hi}i∈N ⊂ T is a sequence of
positive-semidefinite (0, 2)-tensor fields on M converging smoothly to some (0, 2)-

tensor field h ∈ T . If hi = Ric h̃i with h̃i ∈ M for every i ∈ N, then there exists
h̃ ∈ M satisfying the equality h = Ric h̃.

The inner product Q induces an inner product on m∗ ⊗ m∗, which yields, via
(2.17), an inner product on T . We denote by | · |Q the corresponding norm on T .

Proof. By renormalizing each h̃i (leaving hi = Ric h̃i unchanged), we assume that

|h̃i|Q = 1. Because the space T is finite-dimensional, the unit sphere in it with

respect to | · |Q is compact. Consequently, there exists a subsequence {h̃im}m∈N

converging to some h̃ ∈ T . We claim that h̃ ∈ M or, equivalently, that

inf
X∈Θ

h̃(X,X) > 0.

By Lemma 5.2,

inf
X∈Θ

h̃im(X,X) ≥ a sup
X∈Θ

h̃im(X,X) ≥ a
|h̃im |Q√

n
=

a√
n
> 0,

and so the same holds for h̃ by passing to the limit. Since

|Ric h̃− h|Q = lim
m→∞

|Ric h̃im − h|Q = lim
m→∞

|him − h|Q = 0,

one has h = Ric h̃. �

Lemma 5.4. Let H be maximal in G. Assume g lies in the set Ξ given by (5.1).
Then

a− ≤ inf
X∈Θ

g(X,X) ≤ sup
X∈Θ

g(X,X) ≤ a+

for some constants a−, a+ > 0 depending only on G, H, and Q.

Proof. First, we prove that

inf
X∈Θ

g(X,X) ≥ a−.(5.2)

Assume, for the sake of contradiction, that there exists a sequence {hi}i∈N ⊂ Ξ
such that

inf
X∈Θ

hi(X,X) ≤ 1

i
, i ∈ N.

According to Lemma 5.2,

sup
X∈Θ

hi(X,X) ≤ 1

ia
, i ∈ N.

Therefore, the formula limi→∞ |hi|Q = 0 holds, and the sequence {hi}i∈N converges

to 0 ∈ T . In view of Lemma 5.3, Ric h̃ = 0 for some h̃ ∈ M. However, by
Lemma 3.5, since H is maximal in G, there are no Ricci-flat metrics in M. This
contradiction proves (5.2).
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Next, we claim that

sup
X∈Θ

g(X,X) ≤ a+.(5.3)

Consider the set

Ω :=
{
h ∈ M : sup

X∈Θ
h(X,X) = 1, S(h) ≥ 0

}
.

Lemma 5.2 shows that Ω ⊂ Ω̂ := {h ∈ M : a ≤ h(X,X) ≤ 1 for all X ∈ Θ}, where
a > 0. The topology of M induces topologies on Ω and Ω̂. Fix a Q-orthonormal
basis {el}nl=1 in TμM . Clearly, h ∈ M lies in Ω̂ if and only if the eigenvalues of the
matrix of h at μ ∈ M with respect to the basis {el}nl=1 belong to the interval [a, 1].

This observation implies that Ω̂ is compact. It is easy to see that Ω is closed in Ω̂.
Therefore, Ω must be compact.

Define a function

f : Ω → R

so that f(h) is the largest of the sectional curvatures of h at μ ∈ M . This function
is continuous and, therefore, bounded. Given h ∈ Ω, it is easy to see that bh has
sectional curvatures less than 1

n−1 as long as b > (n − 1)f(h). For such b, the

tensor field bh cannot be the Ricci curvature of any metric in M [23, Corollary
3.6], [27, Theorem 4.3].

Define

g̃ := g/ sup
X∈Θ

g(X,X).

It is clear that g̃ lies in Ω. According to the assumptions of the lemma, bg̃ is the
Ricci curvature of a metric in M for b = supX∈Θ g(X,X). Consequently,

sup
X∈Θ

g(X,X) ≤ (n− 1)f(g̃).

Thus, (5.3) holds with a+ := (n− 1)maxh∈Ωf(h). �

Proof of Theorem 2.6. (i) The existence of a sequence {gi}i∈N ⊂ M satisfying (1.1)
for all i ∈ N and g1 = cT for some c > 0 is a consequence of Theorem 3.1 and the
maximality assumption on H. Lemma 5.4 implies that any such sequence lies in
the set

{cT} ∪ {h ∈ M : a− ≤ h(X,X) ≤ a+ for all X ∈ Θ}.
This set, with the topology inherited from M, is compact. Any of its subsets must,
therefore, be relatively compact in M.

(ii) The proof is completely analogous to that of (i). �

The following remark may prove useful in the future analysis of the Ricci iter-
ation. Given i ∈ Z, the Riemannian metric gi from Theorem 2.6 induces an inner
product on m∗ ⊗ m∗, which yields, via (2.17), an inner product on T . Denote the
corresponding norm on T by | · |gi .

Remark 5.5. Lemma 5.4 provides an estimate for the difference between gi and
gi−1. Namely, we have

|gi − gi−1|2Q ≤ a2+
(
n+ |Ric gi|2gi − 2S(gi)

)
, i ∈ Z.(5.4)
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To see this, fix a Q-orthonormal basis {el}nl=1 of TμM diagonalizing gi. The left-
hand side of (5.4) equals

n∑
l,m=1

(gi − gi−1)(el, em)2

=

n∑
l,m=1

gi(el, el)gi(em, em)

(
(gi − gi−1)

(
el√

gi(el, el)
,

em√
gi(em, em)

))2

.

Lemma 5.4 implies that it is bounded from above by

a2+

n∑
l,m=1

(gi − gi−1)

(
el√

gi(el, el)
,

em√
gi(em, em)

)2

.

The vectors
{

el√
gi(el,el)

}n

l=1
form a gi-orthonormal basis of TμM . Therefore, our

last displayed expression equals

a2+|gi − gi−1|2gi = a2+〈gi − gi−1, gi − gi−1〉gi
= a2+

(
|gi|2gi + |gi−1|2gi − 2〈gi, gi−1〉gi

)
= a2+

(
n+ |Ric gi|2gi − 2S(gi)

)
,

where 〈·, ·〉gi is the inner product on T induced by gi. Formula (5.4) follows imme-
diately.
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